Friday, November 16, 2012

Tech Professor Receives Death Threats Over Climate Change




Here is a link to a couple of articles about Tech Political Science Professor Katharine Hayhoe. Dr. Hayhoe is a climate scientist whose research supports the conclusion that human activity have helped to cause global climate change. Dr. Hayhoe is perhaps unique in the debate about climate change because she is an evangelical Christian and she and her husband, a pastor, have written a book about climate change from an evangelical perspective.

http://www.katharinehayhoe.com/

I was quite disturbed to learn that her views have led to her receiving death threats!! If you would like to know more about this then please take a look at the following articles. I think these articles show how misunderstood the process of science is by many Americans!

Texas Tech scientist sees intimidation effort behind barrage of hate mail. http://texasclimatenews.org/wp/?p=4153

Newt Dumps Christian Climate Scientist
http://motherjones.com/environment/2012/01/newt-dumps-leading-climate-scientist

McG's Last Day




Obviously, in a one-semester course that attempts to integrate Geology, Climate Science, Oceanography, and Biology there will be lots of potentially topics that will remain uncovered.  Today I would like to illustrate two important points "take home points" by having us watch two of my favorite videos.

The World is Complicated and It is Really Cool!!
One of the highlight of my "biology life" was visiting Kruger Park when I was about 13 (how sad to peak so young). I saw lots of amazing animals, but I didn't see anything like this. This video keeps getting better so watch it all the way to the end. Enjoy!!

http://www.youtube.com/watch?v=LU8DDYz68kM



There Are Lots of People on the Earth!!
Here is a link to a YouTube video on "World Population" The first minute and a half or so is a little boring, so you can skip over it if you wish. However, I think the animation showing when and where human population growth has been occurring is really cool.

http://www.youtube.com/watch?v=4BbkQiQyaYc

Presentation Schedule & Important Dates and Deadlines


As we near the end of the semester I want to make sure that everyone is aware of what is coming up and is clear on all of the important dates and deadlines.

Lecture
The presentation schedule is provided below.  Your oral presentation will account for 15% of your lecture grade and your term paper on the same topic (3 - 5 pages) will count for 15% as well.  The paper is due on Wednesday December 5th.

Lab
There will be no oral report of your lab results.  The scientific paper reporting on the results of your study is due on December 10th by 5:00 PM.

Final Exam
The Final Exam will be on Tuesday December 11th  7:30 - 10:00.

Presentation Schedule

Monday November 19
Purshia- Environmental Philosphy
Ry

Monday November 26
Emily
Sarah M- Climate Change and Culture
Jessica

Wednesday November 28
Jessie- Cephalopods
Reagan
Tim- Tides

Friday November 30
Stuart
Stewart
Krista- Rainforest Sustainability

Monday December 3
CJ
Mackenzie
Kelsey- Evolution

Wednesday December 5
Jerron
Allie
Sam

Friday, November 9, 2012

Global Carbon Cycle and Climate Change









Further Reading

Reports from the Intergovernmental Panel on Climate Change

A report of Working Group I of the Intergovernmental Panel on Climate Change:
Summary for Policymakers
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf

IPCC- Synthesis Report- http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf

Articles from EoE

Global Warming- http://www.eoearth.org/article/Global_warming

Most of the slides from the global climate change portion of this presentation came from Katharine Hayhoe's website (she is a professor in the Tech Political Science Dept and the link to her website is listed on the presentation).

Global Carbon Cycle and Global Climate Change
http://www.slideshare.net/secret/C6iDTujQlIh73C

Further Reading

Climate Change FAQ- http://www.eoearth.org/article/Climate_change_FAQs

Causes of Climate Change- http://www.eoearth.org/article/Causes_of_climate_change

Economics of Climate Change- http://www.eoearth.org/article/Economics_of_climate_change

Mauna Loa Curve- http://www.eoearth.org/article/Mauna_Loa_curve

Expected Learning Outcomes

By the end of this course a fully engaged student should be able to

- identify the major reservoirs of carbon

- discuss the two most important biological processes that result in a movement of carbon from one reservoir to another

- discuss the three ways that human activity has altered the global carbon cycle

- explain the Mauna Loa Curve

- discuss why climate scientists have concluded that global temperatures have increased

- discuss why cllimate scientists have concluded that this increase in temperature is most likely caused by humans

- discuss some potential consequences of global climate change

Wednesday, November 7, 2012

The Physical Environment- Climate Basics



Introduction

The physical environment can have a profound influence on ecology at a variety of levels. For example, the physical environment can act as a strong selective presssure to produce adaptations or can influence the rates of nutrient cycling through an ecosystem. For our simple purposes here, the two most important components of the physical environment are temperature and precipitation. I suggest that we can predict a lot about what is going on ecologically in an environment if we know something about temperature and precipitation patterns.

From watching the nightly news we all know how difficult it is for the local weatherperson to accurately predict what the weather is going to be like tomorrow. Fortunately, it is much easier to understand broad patterns of variation in temperature and precipitation.

Temperature



The dominant global temperature pattern is that it tends to get cooler as you move away from the poles. The cause of this is relatively simple. Because the earth is so far from the sun, the light rays hitting the earth are basically paralell to each other. Because of the curvature of the earth, sunlight hitting the earth near the equator falls over a smaller area than sunlight hitting near the poles. Because the same amount of light energy is hitting a smaller area near the equator, the concentration of energy/area is greater near the equator than the pole thus resulting in higher temperatures.

Elevation is another factor that influences global temperatures. Because there is less insulating atmosphere above areas of high elevation temperatures tend to decrease as you go up in elevation.

Large bodies of water can mediate temperature variations. For example, seasonal and daily variation in temperatures are much lower in areas near the ocean (maritime climates) than they are in areas far from the ocean (continental climates).

Global temperature patterns can also be affected by patterns of ocean circulation. For example, the west coast of continents are often cooled by cool water flowing from the poles to the tropics while the east coasts of continents can be warmed by warmer water from the tropics to the poles (e.g., the Gulf Stream). If you have ever been to the beach in southern California you surely noticed how cold the water was; east coast beaches at similar latitudes have much warmer water.

Precipitation

In order to understand global precipitation patterns you need to understand global patterns of atmospheric circulation. Hopefully, after studying the article on atmospheric circulation you will be able to explain-

1. why there tends to be high precipitation in tropical regions and

2. why precipitation tends to be low at 30 degrees North and South of the equator.

Patterns of precipitation can also be influenced by the presence of mountains. As air masses containing moisture hit a mountain they are forced upward. Because rising air cools and cool air







holds less moisture, precipitation occurs on the windward side of mountains. Once the air mass has passed over the mountain in falls to lower elevations and gets warmer. Because most of the moisture has been lost as precipitation on the windward side of the mountain and the warmer air holds more moisture there is very little precipitation on the leward side of the mountain resulting in a "rainshadow desert".

Let's think about Lubbock!

Let's see if we can use our newfound understanding of some of the factors influencing temperature and precipitation to make predictions about what the climate should be like in Lubbock. What information do we need about the geographic location of Lubbock to help us understand the climate? First, we need to know the latitude; Lubbock is located approximately 33 degrees north. Second we need to know something about the proximity to the ocean. As an old beach boy, I can guarantee you that we are a long, long way from the ocean in Lubbock. Third, where is Lubbock in relation to mountains? Lubbock is located to the east of the southern extension of the Rockies.

Why is all of this important?

1. What can we learn from the latitude of 33 degrees North? This latitude is still close enough to the equator to be warm so we expect relatively high temperatures. Because Lubbock lies near the 30 degree zone of low precipitation we would predict relatively low precipitation. At 30 degrees North we would predict that Lubbock would receive predominately winds from the west.

2. From the continental location of Lubbock we would predict fairly extreme daily and seasonal fluctuations of temperatures.

3. Because Lubbock lies in the Westerlies most of the precipitation that is arriving in Lubbock comes from the Pacific Ocean. Because these winds have passed over the Rockies we would predict that Lubbock would lie in a rainshadow, again causing low precipitation.

How did we do. If anyone has ever been in Lubbock (especially in the spring time) you would know that the wind almost always blows in from the west. Temperatures are relatively warm but there is fairly large seasonal and daily variations in temperature. Lubbock has a semi-arid climate and receives on average about 18 inches of precipitation per year. Thus, with just a little bit of knowlege about the factors that influence global patterns of temperature and precipitation we were able to fairly accurately the climate in Lubbock. Thus, I would expect that organisms native to Lubbock should be well adapted to the low precipitation, continental climate of the region (the short grass prairie was the dominant vegetation type presettlement).

See use these patterns to understand climate in your town (note climate patterns in Texas are complicated in central and eastern Texas becasue of the influence of air masses coming up from the Gulf). Compare the temperature and precipitation of your town with that if very divergent locations around the globe.


Further Reading

If you would like some more detailed information about factors affecting climate and the atmosphere you can check out the Atmosphere Chapter in Michael Pidwirny's online Physical Geography textbook http://www.physicalgeography.net/fundamentals/contents.html.

Powerpoint Presentation

Click here to see the powerpoint presentation "Factors Influencing the Physical Environment".
http://www.slideshare.net/secret/EaVq4nm5KuSsBI

Expected Learning Outcomes
At the end of this course a fully engaged student should be able to

- describe global patterns of variation in temperature and precipitation and be able to explain the causes of these patterns

- for any location in the world, use your knowledge of the factors that affect global patterns to preict the local climate